Measures of Intrinsic Hardness for Constraint Satisfaction Problem Instances
نویسندگان
چکیده
Our aim is to investigate the factors which determine the intrinsic hardness of constructing a solution to any particular constraint satisfaction problem instance, regardless of the algorithm employed. The line of reasoning is roughly the following: There exists a set of distinct, possibly overlapping, trajectories through the states of the search space, which start at the unique initial state and terminate at complete feasible assignments. These trajectories are named solution paths. The entropy of the distribution of solution paths among the states of each level of the search space provides a measure of the amount of choice available for selecting a solution path at that level. This measure of choice is named solution path diversity. Intrinsic instance hardness is identified with the deficit in solution path diversity and is shown to be linked to the distribution of instance solutions as well as constrainedness, an established hardness measure.
منابع مشابه
The Impact of Balancing on Problem Hardness in a Highly Structured Domain
Random problem distributions have played a key role in the study and design of algorithms for constraint satisfaction and Boolean satisfiability, as well as in our understanding of problem hardness, beyond standard worst-case complexity. We consider random problem distributions from a highly structured problem domain that generalizes the Quasigroup Completion problem (QCP) and Quasigroup with H...
متن کاملGenerating Satisfiable Problem Instances
A major difficulty in evaluating incomplete local search style algorithms for constraint satisfaction problems is the need for a source of hard problem instances that are guaranteed to be satisfiable. A standard approach to evaluate incomplete search methods has been to use a general problem generator and a complete search method to filter out the unsatisfiable instances. Unfortunately, this ap...
متن کاملTowards Interesting Patterns of Hard CSPs with Functional Constraints
The hardness of finite domain Constraint Satisfaction Problems (CSPs) is an important research topic in Constraint Programming (CP) community. In this paper, we study the association rule mining techniques together with rule deduction and propose a cascaded approach to extract interesting patterns of hard CSPs with functional constraints. Specifically, we generate random CSPs, collect controlli...
متن کاملExtended Formulation for CSP that is Compact for Instances of Bounded Treewidth
In this paper we provide an extended formulation for the class of constraint satisfaction problems and prove that its size is polynomial for instances whose constraint graph has bounded treewidth. This implies new upper bounds on extension complexity of several important NP-hard problems on graphs of bounded treewidth.
متن کاملOn Coloring Resilient Graphs
We introduce a new notion of resilience for constraint satisfaction problems, with the goal of more precisely determining the boundary between NP-hardness and the existence of efficient algorithms for resilient instances. In particular, we study r-resiliently k-colorable graphs, which are those k-colorable graphs that remain k-colorable even after the addition of any r new edges. We prove lower...
متن کامل